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• Project start date 10/1/2015
• Project end date 9/30/2017
• Percent complete 75%

• Barriers addressed
– Cost: not greater than 5$/kg
– Performance: leading to 50% 

reduction in primary metal weight in 
automobiles by 2050

– Predictive Modeling: validate 
potential for high throughput tools 
and methodologies in alloy 
development

• Total project funding $3,166,346
– DOE share - $2,533,076
– Contractor share - $633,270

• Funding FY2016 = $1,562,062
• Funding FY2017 = $971,014

Timeline

Budget

Barriers

• Project lead – Intermolecular
• Collaborators 

– N.C. State University
– Ohio State University
– Arconic
– General Motors

Partners

Overview
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Relevance
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• Overall objectives:
1. Validate Intermolecular’s high-throughput 

experimentation (HTE) approach to 
lightweight alloy discovery development. 
• Combinatorial thin-film deposition (discovery) PLUS
• Advanced alloy modeling combining both 

theoretical and observational models

2. Demonstrate the viability of low-density, 
high-entropy alloys (LDHEAs) as a 
lightweighting approach for vehicle 
applications to meet goals in the DOE-VTO 
MYPP. The Multi-Year Program Plan is the 
guiding document for funding VTO projects. 
• HEAs are specific concentrated multinary alloys
• Potential for higher specific yield strength (SYS) 

than traditional alloys
• Design flexibility for corrosion and processing
• Large, unexplored composition space

Isothermal slice of a
3-element phase 

diagram

Typical gradient film 
on substrate



• Cost and Performance
– Goal: achieve the SYS of a Ti alloy for the price 

of a Mg alloy
• “Stronger than Ti, cheaper than Mg”

• Modeling
– From 150 billion possibilities to 1 alloy meeting 

targets
– Must be fast and robust to new input

Relevance for addressing barriers

Performance
Targets
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Approach
Budget Period 1 (Oct ‘15 – Sep ‘16) Budget Period 2 (Oct ‘16 – Sep ‘17)

Task # Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 Project Management and Reporting
1.1 Experimental Workflow Development and Calibration
1.2 Sc-Free Materials Modeling and Target Selection
1.3 Phase diagram modeling for Sc-free candidate families
1.4 High-Throughput Screening and optimization of alloy families 
1.5 Lab-Scale Bulk Studies 

2.1 Final HEA optimization and Single-Element Substitution 
Studies

2.2 Lab-Scale Bulk Studies of Single Element Substitutions
2.3 Manufacturability, scale-up, and coupon testing

MILESTONES
Year 1

Year 2

1
2 43

5
6 7 8

Milestone BP Description
1 1 HTE workflow complete and ready for  alloy gradient fabrication
2 1 Initial alloys deposited
3 1 Calibrated phase diagrams for all candidate alloy families
4 1 One or more LDHEA meets performance targets; HTE results within 10% of small bulk results
5 2 Calibrated phase diagrams for all single-element substitution alloys
6 2 At least 1 thin-film composition meeting all targets
7 2 At least 1 bulk sample meeting all targets
8 2 Final coupon testing complete

Complete In Progress
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Executive Summary
• Started from 150 billion compositions and found so far one potential 

candidate
• Increased existing HEA database (~10yrs) by 3x in 18 months with focus on 

low-density HEA (LDHEA)
• Found one alloy with specific compressive yield strength = 229 MPa x cc/g, 

which would allow 40% weight reduction for connecting rod (in ICE). RT & 
hot tensile testing, followed by optimization, RT & hot fatigue testing, and 
corrosion testing are scheduled.

• Final efforts started to find ductile LDHEA with density <5.5g/cc
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Technical Accomplishments and 
Progress – Project Design
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Technical Accomplishments and 
Progress – Project Design
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Electronegativity trumps all

• Single Phase Solid Solution (Y/N)
• 1,490 exp. points (24 sources)
• All process conditions
• Filtered to >550 data points

HEA Database
• 91 parameters
• Thermodynamic, geometric, 

electronic, density, and price
• 1 input table for 48 elements
• 3 binary enthalpy matrices

Parameters

• END ranks 1st in significance for single-phase 
disordered solid solutions (SPSS)

• ASD (based on CN = 12) ranks 2nd

• Entropy/enthalpy ratio achieves p-value = 0.02
• Larger probability of SPSS for higher mass density
• Larger probability of SPSS for less elements

80% parameters significant (p-value <0.05)

END
(electronegativity difference)

ASD
(atom size difference)

Ω
(Entropy/enthalpy ratio)

ID Parameter p-value t-statistic
1 END (Allred-Rochow scale) 8.E-36 -14.3
6 ASD (CN = 12) 1.E-25 -11.5

22 Mass Density 1.E-11 7.2
35 Number of elements 2.E-08 -5.9
46 Young's Modulus 7.E-07 5.1
67 Valence Electron Concentration 2.E-04 3.9
72 Entropy/Enthalpy Ratio 2.E-02 2.4
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Machine Learning shows low 
number of SPSS candidates <5g/cc

• Machine learning, based on HEA database and parameters, used to guide
alloy design for single-phase solid solutions (SPSS)

• Results shown below for quarternaries starting from 31 elements, with each
element in range 5-85at.-% in steps of 10at.-%

• ~3% of population with confidence level >0.5 for SPSS (all mass densities)
• Filtering reduces <5g/cc population from ~2 million to ~350 compositions 

(CL>0.5, <5$/kg, 5-45at.-%)

Confidence level based on machine learning
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Technical Accomplishments and 
Progress – Project Design
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Simple Calculated Phase Diagrams 
show 81% accuracy for database
• Calculate phase diagram by constructing Gibbs-free energy convex hull

• Use formation enthalpies for ordered compounds (DFT database), no entropy
terms

• Use solid solution model based on Miedema enthalpy terms and configurational
entropy terms

• Results show the highest accuracy for the model with the most terms
• This is complimentary to CALPHAD when databases are not capturing the

alloys, and complimentary to DFT calculations when solid solution database
not yet available, yet usefulness for wide range of alloys outside of current
HEA database (biased towards transition metals) needs to be validated

Model
TP FP FN TN ACCΔH ΔS

SPSS

M I 43 103 59 294 0.68

M IE 41 89 61 308 0.70

CE I 35 32 67 365 0.80

CE IE 35 30 67 367 0.81

ΔH Model:
• M: Miedema model
• CE: Chemical + Elastic interactions

ΔS Model:
• I:   Ideal configurational entropy
• IE: Ideal configurational + Excess

configurational entropy

T chosen to be 35% Tm CALPHAD, or 43% averaged 
constituent Tm’s when Tm CALPHAD not available

SPSS = single phase solid solution
TP = true positive
FP = false positive
FN = false negative
TN = true negative
ACC = accuracy (predictability)
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Technical Accomplishments and 
Progress – Project Design
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Accuracy by different methods for 
database 71-82%
• When comparing machine learning to other methods, database reduced from >550 to

45 data points, and 45 points not included to develop machine learning, not to bias
comparison towards machine learning

• Where CALPHAD shows 71-77% accuracy for SPSS for the smaller data set (45), it
cannot support 30% for larger database (550) where it shows 71-80% accuracy for
those (70%) supported by CALPHAD

• HEA database (550) contains very few LDHEA points (almost all not SPSS, and all
SPSS <5g/cc by mechanical alloying), so results are potentially biased towards density
of 5-9g/cc

Model TP FN FP TN Accuracy

Machine Learning 0.33 0.02 0.16 0.49 0.82
Simple Phase Diagrams 0.31 0.04 0.18 0.47 0.78

CALPHAD-DB1 0.20 0.10 0.13 0.57 0.77
CALPHAD-DB2 0.21 0.10 0.19 0.50 0.71

SPSS accuracy comparison for different methods with small (45) database

Sum of TP+FN and sum of TN+FP should be equal for all 4 rows, yet this does not 
hold for CALPHAD, since not all entries can be run through CALPHAD

Distribution HEA database (550)
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Technical Accomplishments and 
Progress – Project Design
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Thin-Film to Bulk Comparison 
shows good match for XRD

• Known LDHEA proved elusive, so switched to Al-Cr-Fe-Co-Ni for workflow validation
• Demonstrated 100% agreement of crystal structures observed for 21 thin film and bulk 

samples based on XRD, which includes Al-Cr-Fe-Co-Ni and other 3-e, 4-e, and 5-e alloys

• Hardness map delays HTE screening, since it requires extensive microstructure mapping 
(grain size, texture, density) to add value to hardness maps, requires additional thin-film 
processing to ensure valuable results, and extrapolating thin-film hardness values to bulk 
hardness values for new alloys requires known parameters for Hall-Petch

Al38.2Ti5.3Cr25.6Mn4.7Fe26.1
098OX0005-49 site 49

Thin film,  800C

098PU0003-46
Al38Ti5Cr26Mn5Fe26
Bulk,  800C
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Discrepancy between CALPHAD 
and experiment for LDHEA
• Note that all relevant binary and/or ternary phase diagrams are not yet 

assessed in CALPHAD, typically necessary to improve accuracy for 
quarternary and quinary alloys

• Most CALPHAD work historically went into conventional alloys, not near 
equiatomic concentrations of e.g. quarternary and quinary alloys

• Experimental results not necessarily 100% equilibrated, and might 
include errors

Experiment (XRD) CALPHAD (HEA) Comparison
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Most promising candidates found 
are 2-phase LDHEA
• Alloy Design: Moving from typical visual cut-offs in graphs of phenomenological selection rules 

to confidence levels based on machine learning shifted the focus from single-phase to multi-
phase LDHEA, since machine learning narrowed the number of single-phase LDHEA 
significantly, in agreement with searches through CALPHAD databases

• Alloy Design: Most alloys based on Mg, Al, Si, Ti, Cr, Mn, Fe, Ni, Cu, & Zn

• Experiments: Finding viable, ductile candidates moved density above 5g/cc

• Experiments: Feasibility of arc melting screened out combination of low boilers mixed with high 
melters (“ease of manufacturing” filter)

• Experiments: VEC rule of limited use to search for FCC-based LDHEA

0.5”-dia x 0.75”-long cylinder 
under compression

(1) BCC + IM show highest compressive strain
(2) FCC + IM with limited compressive strain
(3) Hard, brittle, single-phase BCC

Room-Temperature Compression (0.5”-dia x 0.75”-long cylinders)

S
tre

ss
 (M

P
a)

Strain (in/in)
0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16

BCC + IM BCC + IM

BCC + IM BCC + IM

FCC + IM FCC + IM

FCC + IM BCC

BCC BCC

BCC FCC + IM

FCC + IM FCC + IM

BCC + IM

18



Responses to Previous Year 
Reviewers’ Comments
• This project was not reviewed last year
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Collaboration and Coordination 
with Other Institutions

• Project Sub
• Produced and 

characterized 
small bulk 
samples

• Project Sub
• Provided 

analytical 
models and 
phase diagrams

• Project Advisor
• Provided 

guidance on 
automotive part 
choice and test 
protocols

• Project Sub 
• Produced and 

characterized 
bulk alloy 
samples

NCSU OSU Arconic GM
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Remaining Challenges & Barriers
• Mass Density and Cost – getting below 5.5g/cc and 

7$/kg is difficult for ductile FCC/BCC-based LDHEA
• Modeling – Validation of new alloy design methods takes 

time, and relying on existing fast methods often provide 
evolutionary solutions at best; Difficult to design alloys 
with predictable mechanical properties

• Others – Unknown mechanical properties beyond 
compressive tests, and transfer from lab to fab
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• Short-term Future Research (balance of 2017): Milestones 2-3 
and 2-4
– Tensile tests, 25lbs casting, thermo-mechanical process 

development, and fatigue and corrosion tests
– Continue to explore 4- and 5-element alloys <5.5g/cc within 

multinary FCC/BCC-based 4- and 5-element LDHEA
• Long-term Future Work (follow on work): 

– Explore more novel microstructures for LDHEA, and focus less on 
FCC/BCC-based 4- and 5-element LDHEA design

– Populate and experimentally validate LDHEA database based on 
Cluster Expansion & Special Quasi-random Structures (CE/SQS)

Any proposed future work is subject to change based on funding levels

Proposed Future Research

22



Summary Slide

Relevance
• Develop a low-density, low-cost, 

high-strength, concentrated, 
multinary alloy using HTE

Approach
• Demonstrate correlation 

between thin-film HTE and bulk 
alloy properties

• Demonstrate correlation 
between models and 
observation

• Identify candidates and test for 
mechanical properties

Technical 
Accomplishments
• Validated HTE for LDHEA 

development
• Developed HT modeling for 

alloy development
• Achieved SYS = 229MPa x 

cc/g @ 8$/kg
Future Work
• Tensile/fatigue testing, and 

optimization
• Single-element substitutions
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